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Abstract—Deep learning excels by utilizing vast datasets
and sophisticated training algorithms. It achieves superior
performance across many machine learning challenges com-
pared to traditional methods. However, deep neural networks
(DNNs) are not flawless; they are particularly susceptible to
adversarial samples during the inference phase. These inputs
area deliberately designed by attackers to cause DNNs to make
incorrect classifications, exploiting the networks’ vulnerabilities.
This letter proposes a novel perspective to fortify the neural
network (NN) defense against adversarial attacks. We enhance
the NN security by employing an emerging model of computation,
namely, stochastic computing (SC). We show that strengthening
NN with SC counteracts the adverse effects of these attacks on
an NN output and adds a vital defense layer. Our evaluation
results reveal that SC notably increases NN robustness and
decreases susceptibility to interference, creating secure, reliable
NN systems. The proposed method improves accuracy and
reduces hardware footprint and energy consumption by up to
85%, 88%, and 95%, respectively.

Index Terms—Adversarial attack, low-cost hardware design,
secure neural networks (NNs), stochastic computing (SC).

I. INTRODUCTION

APID deployment of neural networks (NNs) in vari-
Rous industries has led to significant advancements in
data analysis, pattern identification, and strategic decision-
making [1]. However, integrating these technologies into
critical sectors presents a significant challenge: protecting
these systems from sophisticated adversarial attacks designed
to compromise NN output accuracy and reliability. Depending
on the attack features, the attacker’s level of access to network
specifications varies. With this knowledge, the attacker manip-
ulates the data before it enters the network for classification.
The goal is to make minimal changes to the input data,
which would result in misclassification by the network. While
some strategies aim to neutralize attacks by understanding
and reversing their effects or by blocking the attacker’s
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influence [2], the proposed solution of this letter takes a
different approach.

We demonstrate that, with modifications to the computa-
tional units, the network can effectively operate in the presence
of adversarial attacks, where an attacker manipulates input data
prior to classification, and achieves reliable performance both
under attack and in normal conditions.

This innovative idea proposes a new approach, designing
networks to maintain performance against adversarial actions
by emphasizing resilience and adaptability instead of con-
frontation or avoidance.

Stochastic computing (SC) is an emerging computational
model with high error tolerance in computations and data
representation [3]. This letter examines the effectiveness of SC
as a protective strategy against adversarial threats, which is
particularly important for industries where data accuracy and
integrity are crucial. In essence, this letter provides insights
into how SC can improve the security of NN, representing a
significant advancement in the ongoing effort to create resilient
artificial intelligence (AI) systems. The main contributions of
this letter are as follows.

1) We adopt quasi-random SC with high accuracy in a
single iteration in contrast to the prior SC solutions
with pseudo-random sequences and multi-iterations for
optimum accuracy.

2) We show that using SC for only the initial layers
significantly improves the network’s robustness.

3) Our approach ensures accurate outcomes even if suc-
cessful attacks occur, bypassing the need for the system
to detect or block attackers’ data manipulations.

4) Our method is adaptable to both simple and complex
networks, making it a versatile defense strategy.

5) Our method shows energy efficiency, reduced area foot-
print, and optimized system performance, useful for
applications with limited resources.

6) Our approach improves NN accuracy against adver-
sarial attacks without requiring the detection of them,
performing effectively in various scenarios for reliable
performance.

II. ADVERSARIAL ATTACKS

NNs have received significant attention in recent years and,
as a result, have increasingly become targets for adversarial
attacks. Classification NNs, a versatile subset of machine
learning models, are designed to classify input data into
some predefined classes. These networks, built upon layers
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of interconnected nodes, learn to classify from training data.
Their versatility, demonstrated in various applications, from
alternative energy resources [4] to communications [5] makes
them popular. While these NNs are powerful for data analysis
and interpretation, they are vulnerable to attacks [6]. The
attacks can subtly manipulate input data, causing the network
to misclassify. For example, an image slightly altered at the
pixel level could be wrongly identified, or a text with minor
alterations might be misinterpreted.

The evolution of adversarial attacks is driven by a constant
interplay between the development of sophisticated attack
techniques and the establishment of robust defenses. This
dynamic has led to the development of a wide range of
attack strategies, each designed to test NNs in different situa-
tions [7], [8]. Adversarial attacks on deep learning systems are
typically analyzed by focusing on specific key characteristics.
In what follows, we discuss two critical attributes that define
and differentiate these attacks.

A. Glass-Box Versus Closed-Box

The nature of the adversarial attack changes depending on
how much access the attacker has to the target model. In
Glass-Box attacks, adversaries possess full knowledge about
the network, including its structure, parameters, weights, and
how it processes information. This knowledge allows them
to create precisely engineered inputs that can mislead the
network, exploiting their deep understanding to conduct highly
effective attacks. Closed-Box attacks, in contrast, occur when
adversaries have no insight into the network’s internal work-
ings, which means attackers lack access to internal information
about the prey model, including gradient information. They
can only observe NN inputs and outputs, using assumption
and iterative techniques to craft deceptive inputs. Existing
closed-box adversarial attacks primarily rely on query-based,
transfer-based, and meta-learning-based strategies to obtain
output results from the prey model. Consequently, generating
effective attacks becomes more challenging. Although Closed-
Box attacks may seem less threatening due to the limited
information available to the attacker, they are more common
and realistic in everyday scenarios. Adversaries typically oper-
ate with constraints, making Closed-Box attacks a prevalent
challenge for real-world NN applications [9].

B. Targeted Versus Untargeted

In a targeted attack, the adversary meticulously crafts
disturbances to mislead the model into categorizing an input
with a specific, erroneous label. This attack is strategic, with
the attacker’s goal to manipulate the model’s output to match
a predetermined incorrect category. Conversely, untargeted
attacks are not about achieving a specific misclassification;
instead, the attacker’s sole objective is to ensure the model fails
to assign the correct label. The exact nature of mislabeling is
irrelevant in untargeted attacks as long as the outcome deviates
from the truth. This dichotomy highlights the varied strategies
attackers employ to compromise model integrity, ranging from
focused precision to broad disruption [6].

III. ADVERSARIAL DEFENSES

This section briefly explains state-of-the-art (SOTA)
research in defending against attacks and discusses their draw-
backs. Adversarial training is a defense method that enhances
an NN’s robustness by exposing it to adversarial samples
during training. Many recent studies indicate this method as
one of the most effective defenses. It could improve a model’s
resistance to specific types of adversarial attacks. However,
it has some notable drawbacks, such as potential tradeoffs in
model performance and challenges in generalization and scal-
ability. Most importantly, it incurs substantial computational
costs, making adversarial training impractically expensive for
deployment [10]. Some other recent defense mechanisms use
randomization schemes to counteract the effects of adversarial
perturbations in the input or feature domain. Defenses based
on randomization have shown similar effectiveness in Closed-
Box scenarios, providing reassurance about their applicability
in such scenarios. This potential effectiveness in Closed-Box
scenarios is a reason for optimism, but not in Glass-Box
scenarios [11].

Denoising-based is another defense method group that
removes added noise from input data. It is a straightforward
approach for mitigating adversarial perturbations. Methods in
this group include but are not limited to, feature squeez-
ing adversarial detection and gradient masking/obfuscation.
Nevertheless, as demonstrated in [2], it is susceptible to
adaptive and knowledgeable adversaries and may not offer
a strong defense against certain attacks [10], [12]. Another
group of defenses theoretically guarantees the error rate,
assuming heuristic methods might be broken by a new attack
in the future because their effectiveness is only experimentally
validated. These methods can maintain a certain accuracy
under a well-defined class of attacks. However, they fail to
provide the same high level of accuracy as heuristic meth-
ods [13]. To wrap it all up, regarding effectiveness, adversarial
training demonstrates the best performance but at a significant
computation cost. On the other hand, regarding efficiency,
recent works show that randomization and denoising-based
mechanisms are not as effective as they claim to be [12].
At the same time, theoretically proving methods are far from
meeting the practical requirements (in both their accuracy and
their efficiency). Therefore, we still need a defense strategy
that could balance effectiveness and efficiency.

In what follows, we propose a hardware-based method that
achieves high accuracy against Glass-Box attacks with a fixed
computation cost for all networks.

IV. SC AGAINST ADVERSARIAL ATTACKS

The exploration of defense mechanisms extends beyond
the adversarial spectrum, encompassing the compromise and
exploitation of complex machine-learning models. SC emerges
as a potential safeguard in this intricate space, offering high
resilience. SC is a computational model representing and
processing data in uniform random bit-streams (rather than
traditional binary formats). This unconventional computing
model encodes values as the probability of observing a “1”
in a random sequence of “1”’s and “0”’s. SC is known for its
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Fig. 1. Enhancing convolution engine with SC (SNG: Stochastic number
generator and APC: Approximate parallel counter).

TABLE I
CLASSIFICATION PERFORMANCE (%) AFTER ATTACK: 4+ — LENET-5,
FASHION-MNIST, FGSM / & — LENET-5, MNIST-C, FGSM / ¢ —
LENET-5, MNIST, FGSM / % — LENET-5, MNIST, CW / 3% —
RESNET-20, CIFAR-10, CW

Desien A h Correct Attacker’s | Any Other
esign Approac Prediction Success Predictions
+ Binary (8 bit) 8.6 914 -
SC (N=128) 414 58.6
P Binary (8 bit) 20.8 79.2
SC (N=16) 51.2 48.8
Y Binary (8 bit) 428 572
SC (N=32) 93.0 7.0 -
* Binary (8 bit) 5.8 10.3 839
SC (N=16) 79.0 8.8 10.9
% Binary (8 bit) 0.1 99.3 0.6
SC (N=256) 84.7 29 124
e = 0.3 for FGSM H train/test/validation splits: (55.000/5,000/5,000) — MNIST, Fashion-MNIST, MNIST-C

(45,000/4,000/4,000) — CIFAR-10

high fault tolerance and cost efficiency [3] offering a unique
advantage in dealing with noisy or incomplete data and in
scenarios where precision can be traded for lower power
consumption and hardware simplicity.

This letter focuses on two sophisticated attack strategies.
The first one is a Glass-Box untargeted attack. The attacker uti-
lizes the gradient of the loss function to alter the data, resulting
in misclassification [14]. The second one combines the rar-
geted approach with Glass-Box knowledge. This combination
represents one of the most formidable challenges in main-
taining network robustness. In these scenarios, the attacker
aims to manipulate the network’s classification output and
possesses complete knowledge of the network’s architecture,
parameters, and gradients (Glass-Box). This level of under-
standing allows the attacker to craft highly effective adversarial
examples, making it crucial for defense mechanisms to be
remarkably resilient. Proving the system’s robustness against
the second attack also implies its reliability against other types
of attacks [15].

A. Proposed Architecture

In NN, the first convolutional layers contribute significantly
to the total area and power costs due to the row-column nature
of the process and the input data. The fundamental operation
within these layers is dot-product, which multiplies input data
by the weights and then accumulates the results. An activation
function typically follows this to introduce nonlinearity and
help the network learn complex patterns. This letter explores
the idea that by integrating SC in inference, we can signifi-
cantly enhance the network’s resilience to adversarial attacks.
As illustrated in Fig. 1, we propose to perform multiplication
operations, particularly in the first convolutional layers, in
the SC domain. This can be achieved by simple bit-wise
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AND operations, avoiding the complexity and cost associated
with traditional binary multipliers [16]. We exploit SOTA
quasi-random bit-streams for accurate multiplication with
short bit-streams [17]. For the first time, this letter exploits
deterministic quasi-random sequences to enhance the robust-
ness of NN against adversarial attacks with SC. Our approach
simplifies the computation process, enhancing efficiency and
saving computation resources. Quasi-random sequences (e.g.,
Sobol sequences) offer shorter processing time, lower energy
consumption, and higher accuracy compared to traditional
linear feedback shift register (LFSR)-based sequences due to
their fast converging and low-discrepancy nature [17], [18].
Unlike pseudo-random sequences that need multiple runs for
maximum possible accuracy, quasi-random sequences obtain
it with a single run. Our solution maintains the accuracy of
NNs even when they are under attack, such as from adversarial
threats, thereby ensuring the system’s security.

Prior works showed that the savings from the simple
computation logic (e.g., AND gate for multiplication) could
well compensate for the overhead cost of converting data to
bit-stream format [19]. Our approach leaves the training phase
of the network untouched and only replaces the multiplication
operations in the inference phase. By simply modifying
the convolution unit in the chosen layers, we enhance the
network’s robustness during the testing stage without revisiting
the initial training operations. This strategy ensures that
existing NNs can be easily adapted to be more resilient
against attacks without requiring comprehensive retraining or
significant architectural alterations.

B. Implementation

We explore how SC can augment the network’s ability
to tolerate adversarial manipulations. First, we observe the
attacker’s performance on unenhanced NN to assess its impact
and severity. Then, we apply the proposed defense mechanism
to the LeNet-5 as a simpler and to the ResNet-20 as a more
complex NN architecture. To evaluate the robustness against
attacks, we simulate two attacks.

1) Fast gradient sign method (FGSM), which slightly alters
the input by introducing a small, intentional noise
(epsilon, €) that follows the path of the model’s loss
gradient. The goal is to trick the model into making a
wrong prediction [14]. In our implementations, we used
e =0.3.

2) The Carlini and Wagner (CW) attack [15] as a more
complex targeted L2 attack. This attack is grounded in
one of the most common distance metrics for crafting
adversarial examples. The L2 distance metric quantifies
the Euclidean distance between the original input (x) and
its perturbed version (x') that is close in terms of input
space but misclassified in a different class. The L2-norm
attack exploits this metric to identify and generate x'.
The CW attacks achieve 95%—-100% attack success rate
on naturally trained deep NNs (DNNs) for MNIST and
CIFAR-10 [15].

In our experiments, we assume the adversary has full knowl-

edge of the NN, including its architecture and parameters,
emulating a Glass-Box attack. The expectation is that a defense
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Fig. 2. Proposed robust NN setup for LeNet-5 model; the first convolution
layer is equipped with our model, transitioning data to the stochastic domain,
followed by SC multiplications.

mechanism effective against the L2 attack will likely be
capable of counteracting other adversarial strategies.

Table I presents performance measurements where correct
predictions denote the samples successfully classified by the
NN after the attacker manipulates the data. The attacker’s
success rate indicates the degree to which the attacker achieved
its goal (its target label for targeted attack or any misclassi-
fications for untargeted one). Lastly, the last column displays
the number of misclassifications, though these instances did
not align with the adversary’s intended target label. Hence,
for FGSM attack, as an untargetted attack, this column is
not applicable. Fig. 2 shows the NN setup for the LeNet-5
model, which we used with the MNIST, fashion-MNIST, and
MNIST-C [18] datasets. This model comprises five layers,
including two convolution and three dense layers. After each
layer, an activation function is applied. The first two utilize
the rectified linear unit (ReLU) activation, while the final layer
employs the “Softmax” function for output normalization.
For bit-stream generation, Sobol sequences are employed. We
convert data from binary to quasi-random bit-streams using
a stochastic number generator (SNG) unit in the targeted
convolution layer. We vary the bit-stream lengths as needed.
The multiplication operations are performed in the target
layer by bit-wise AND operation between the bit-streams. All
other operations within the network are conducted as per
standard procedures. We further extend our implementation to
a more complex model, ResNet-20, classifying the CIFAR-10
dataset. Our proposed architecture demonstrates the capability
to thwart attacks across all tested network configurations. Our
evaluation results demonstrate our architectural modifications
significantly enhance the network’s resilience against both
attacks for all four datasets.

C. Results

Random number generation and the quality of random bit-
streams are fundamental to the performance of SC systems.
We employ quasi-random bit-streams for optimum energy
efficiency, accuracy, and robustness, distinguishing our approach
from prior pseudo-random SC techniques. We conduct a series
of experiments to gauge the impact of employing quasi-random
SC under attack stress for two NN models. Both networks
were deliberately compromised throughout the tests to achieve
almost zero accuracy while simulating a successful CW attack
and degrade to less than half accuracy while simulating an
FGSM attack. Any deviation from this state, leading to a
restoration of accuracy to ideal values, shows the success of
the defense mechanism in shielding against adversarial attacks.
Table II presents the classification performance of LeNet-5 on

TABLE 11
LENET-5 CLASSIFICATION ACCURACY (%) FOR MNIST DATASET, WHEN
SC APPLIED TO THE 1ST OR 2ND CONVOLUTION LAYERS
(N: BIT-STREAM LENGTH)

Accuracy Accuracy Accuracy
N (No Attack) (CW Attack) (FGSM Attack)
15 Conv.[ 279 Conv. [ 150 Conv. [2" Conv. [ 15F Conv. |29 Conv.

in SC in SC in SC in SC in SC in SC

8 92.8 56.0 69.0 28.0 844 21.0

16 96.4 79.0 79.0 36.0 92.2 458

32 98.0 93.0 61.0 41.0 93.0 522
64 981 97.0 57.0 39.0 914 86.6
128 98.6 97.9 55.0 33.1 914 88.0
256] 989 982 52.0 329 90.0 874
5121 99.0 984 49.1 331 91.0 86.2

TABLE IIT

ACCURACY (%) OF RESNET-20 CLASSIFICATION FOR CIFAR-10
(1sT CONV. IN SC DOMAIN)

Accuracy N=8 716 | 32 ] 64 | 128 | 256 | 512
No Attack 31 53 1 72 18] 87 90 90
CW Attack 32 65 | 72 183 83 85 34

the MNIST dataset before and after two attacks. Prior to the
attack, the presence of SC did not affect the results significantly,
achieving comparable accuracy to that of the conventional non-
SC implementation (99%). We assessed the involvement of SC
in the first and second layers independently. We observed that
employing SC in the second layer does not yield advantageous
outcomes, particularly for smaller bit-stream sizes. After the
attack, substantial improvement is observed in the reported
classification numbers, with the accuracy reaching up to 79%
and 93%, compensating for the initial 0.1% and 42.8% accuracy
resulting from the CW and FGSM attacker’s success across
the entire test set, respectively. Following our evaluation of
LeNet-5, we explore ResNet-20 model, a notably more intricate
architecture. Table III reports the SC’s impact on this model. We
note that we need longer bit-streams (e.g., N = 256) to achieve
conventional network (non-SC) accuracy, which is 92%, with
this model. As can be seen, SC proves to be effective to defend
the attack across all bit-stream sizes, efficiently mitigating the
effects of malicious alterations on the network. We observe
restored accuracy levels up to 85%, healing from the worst-
case scenario of 0% accuracy resulting from the attacker’s full
success on the non-SC model. Compared to SOTA, our solution
demonstrates a misclassification rate of 15% in a safeguarded
version using SC in the presence of an attack. In contrast, the
SOTA approach [19] exhibits a 79.1% misclassification rate
for the same CIFAR-10 dataset. Our proposed method further
provides adaptability to any NN and scalability to any dataset
size due to its minimum network modification.

As it can be seen in Table II, when the bit-stream length
gets larger, and SC is applied to the first convolutional layer,
the accuracy results of the network before the attack become
increasingly similar to those of the baseline binary network.
This trend arises from the inherent bit-stream-based nature
of the process: as the length of the bit stream increases,
the data becomes more representative of real data, thereby
reducing errors and approaching the accuracy levels of the
binary network. The same trend persists when SC is applied
to the second layer of the network. In fact, the difference
in accuracy numbers becomes even more pronounced in this
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Fig. 3. Comparison of classification metrics: traditional binary versus

SC-based network under two adversarial attacks: FGSM attack and CW
attack—using LeNet-5 and MNIST dataset (N: bit-stream length).

TABLE IV
SYNTHESIS RESULTS OF CONVOLUTION LAYER (24 x 24 CONVOLUTION
ENGINES + BIT-STREAM GENERATORS)

Bit-width | Design Area CPL* | Power™ | Energy/
M) Approach (um?) (ns) (W) cycle (nJ)

5 Binary 5,736,960 1.51 7.14 10.79
SC 1,455,553 1.04 0.37 0.39

6 Binary 9,158,400 1.55 8.52 13.21
SC 1,521,019 T.05 0.49 0.51

7 Binary 13,570,560 | 1.88 12.44 23.39
SC 1,589,313 T.06 0.54 0.58

3 Binary 14,768,640 | 1.97 13.39 26.78
SC 1,675,835 1.07 0.74 0.79

4 Critical Path Latency || %: Power at maximum frequency.

case. We observed that applying SC to the first layer has
the most significant impact compared to applying the same
modification to other convolutional layers. We demonstrate
this by presenting the results from the initial layers of the
LeNet-5. Extending evaluations to a more intricate network
like ResNet-20 also validated our observation that employing
SC in the first layer yields the most favorable outcome.

As we can see in Table II, when the attacker manipulates
the input data while we utilize our modified network with
stochastic convolution, a decrease in accuracy is observed as
the bit-stream length approaches 512 bits. This decline can be
attributed to the same principle discussed earlier: by increasing
the length, the data representation becomes more akin to
that of a binary presentation, resulting in accuracy levels
converging toward those of the binary network. Conversely,
reducing the bit-stream length and getting closer to 8 bits leads
to a loss in data precision, consequently causing a drop in
accuracy once more. Ultimately, there exists an optimal point
for the bit-stream length where the most favorable outcome is
achieved. The same trends can also be seen in the numbers
reported in Table III. Table IV illustrates the synthesis results
of the initial convolution layer. In this layer, every pixel of
an input image undergoes parallel processing with a single
filter. It concurrently implements 24x24 convolution units,
using both traditional weighted binary methods (multiplication
and addition in binary) and SC-based approach, as illustrated
in Fig. 3. We utilized Synopsys Design Compiler with a
45nm gate library [20] to synthesize the designs. Additionally,
we employed the Sobol sequences [17] to generate high-
quality bit-streams in SC-based design. As observed, due to
the simple operations in the SC domain, the implementation
cost is greatly reduced. For instance, when implementing
the first convolution layer with a 7-bit fixed-point precision
(M =), the SC-based design notably decreases the hardware
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area footprint by 88%. Regarding power consumption, the SC
design achieves a 95% reduction compared to the conventional
weighted binary design. The critical path latency (CPL) of
the SC-based design is 1.06 ns, compared to 1.88 ns for the
weighted binary approach. The table also presents the energy
per cycle of the proposed design, which is the product of power
consumption by the CPL. For M = 7, the SC design saves
energy per cycle by 97%. It is worth noting that the energy
consumption value needs to be multiplied by the length of
the bit-streams in the SC design. For example, with M = 7,
0.58 x 128 = 73.76. However, high accuracy can mostly be
achieved by short bit-streams that minimize the energy.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

This letter proposes an SC layer as an effective defense
mechanism to strengthen NNs against adversarial attacks. The
enhanced network is accurate and reliable whether adversar-
ial challenges exist or not. Even if attackers have already
penetrated the network, it is not too late to implement a
lightweight SC layer to bypass malicious activities by intrud-
ers. Our evaluation results reveal that SC notably increases
NN robustness and decreases susceptibility to interference,
creating secure, reliable NN systems. This letter focuses on
developing a low-power, hardware-efficient NN architecture
while enhancing system security against adversarial attacks.
For high accuracy and energy efficiency, our solution is
applied to the early layers of the network. For other layers,
longer bit-streams are needed to maintain the accuracy, which
as a result, increases the latency and energy consumption.
The experiments conducted primarily target classification-
based tasks using standard datasets. However, these datasets
may not fully represent the complexity of applications in
critical sectors, especially those with specialized architectures
and domain-specific considerations. A broader exploration of
these safety-critical applications is necessary to evaluate the
performance and robustness of the proposed approach under
more diverse and demanding scenarios. Future work will focus
on extending the framework to include more representative
of such domains, alongside further analysis of the system’s
limitations and potential improvements.
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